Skip to content

DLT Pipeline

laktory.models.resources.databricks.DLTPipeline ¤

Bases: BaseModel, PulumiResource, TerraformResource

Databricks Delta Live Tables (DLT) Pipeline

ATTRIBUTE DESCRIPTION
access_controls

Pipeline access controls

TYPE: list[AccessControl]

allow_duplicate_names

If False, deployment will fail if name conflicts with that of another pipeline.

TYPE: bool

catalog

Name of the unity catalog storing the pipeline tables

TYPE: Union[str, None]

channel

Name of the release channel for Spark version used by DLT pipeline.

TYPE: Literal['CURRENT', 'PREVIEW']

clusters

Clusters to run the pipeline. If none is specified, pipelines will automatically select a default cluster configuration for the pipeline.

TYPE: list[PipelineCluster]

configuration

List of values to apply to the entire pipeline. Elements must be formatted as key:value pairs

TYPE: dict[str, str]

continuous

If True, the pipeline is run continuously.

TYPE: bool

development

If True the pipeline is run in development mode

TYPE: Union[bool, str]

edition

Name of the product edition

TYPE: Literal['CORE', 'PRO', 'ADVANCED']

libraries

Specifies pipeline code (notebooks) and required artifacts.

TYPE: list[PipelineLibrary]

name

Pipeline name

TYPE: str

name_prefix

Prefix added to the DLT pipeline name

TYPE: str

name_suffix

Suffix added to the DLT pipeline name

TYPE: str

notifications

Notifications specifications

TYPE: list[PipelineNotifications]

photon

If True, Photon engine enabled.

TYPE: bool

serverless

If True, serverless is enabled

TYPE: bool

storage

A location on DBFS or cloud storage where output data and metadata required for pipeline execution are stored. By default, tables are stored in a subdirectory of this location. Change of this parameter forces recreation of the pipeline. (Conflicts with catalog).

TYPE: str

target

The name of a database (in either the Hive metastore or in a UC catalog) for persisting pipeline output data. Configuring the target setting allows you to view and query the pipeline output data from the Databricks UI.

TYPE: str

Examples:

Assuming the configuration yaml file

import io
from laktory import models

# Define pipeline
pipeline_yaml = '''
name: pl-stock-prices

catalog: dev
target: finance

clusters:
  - name : default
    node_type_id: Standard_DS3_v2
    autoscale:
      min_workers: 1
      max_workers: 2

libraries:
  - notebook:
      path: /pipelines/dlt_brz_template.py
  - notebook:
      path: /pipelines/dlt_slv_template.py
  - notebook:
      path: /pipelines/dlt_gld_stock_performances.py

access_controls:
  - group_name: account users
    permission_level: CAN_VIEW
  - group_name: role-engineers
    permission_level: CAN_RUN

'''
pipeline = models.resources.databricks.DLTPipeline.model_validate_yaml(
    io.StringIO(pipeline_yaml)
)
References
ATTRIBUTE DESCRIPTION
resource_type_id

dlt

TYPE: str

additional_core_resources
  • permissions

TYPE: list[PulumiResource]

Attributes¤

resource_type_id property ¤

resource_type_id

dlt

additional_core_resources property ¤

additional_core_resources
  • permissions

laktory.models.resources.databricks.dltpipeline.PipelineLibraryFile ¤

Bases: BaseModel

Pipeline Library File specifications

ATTRIBUTE DESCRIPTION
path

Workspace filepath

TYPE: str


laktory.models.resources.databricks.dltpipeline.PipelineLibraryNotebook ¤

Bases: BaseModel

Pipeline Library Notebook specifications

ATTRIBUTE DESCRIPTION
path

Workspace notebook filepath

TYPE: str


laktory.models.resources.databricks.dltpipeline.PipelineLibrary ¤

Bases: BaseModel

Pipeline Library specifications

ATTRIBUTE DESCRIPTION
file

File specifications

TYPE: str

notebook

Notebook specifications

TYPE: PipelineLibraryNotebook


laktory.models.resources.databricks.dltpipeline.PipelineNotifications ¤

Bases: BaseModel

Pipeline Notifications specifications

ATTRIBUTE DESCRIPTION
alerts

Alert types

TYPE: list[Literal['on-update-success', 'on-update-failure', 'on-update-fatal-failure', 'on-flow-failure']]

recipients

List of user/group/service principal names

TYPE: list[str]


laktory.models.resources.databricks.dltpipeline.PipelineCluster ¤

Bases: Cluster

Pipeline Cluster. Same attributes as laktory.models.Cluster, except for

  • autotermination_minutes
  • cluster_id
  • data_security_mode
  • enable_elastic_disk
  • idempotency_token
  • is_pinned
  • libraries
  • no_wait
  • node_type_id
  • runtime_engine
  • single_user_name
  • spark_version

that are not allowed.