has_column
laktory.spark.dataframe.has_column
¤
FUNCTION | DESCRIPTION |
---|---|
has_column |
Check if column |
Functions¤
has_column
¤
has_column(df, col)
Check if column col
exists in df
PARAMETER | DESCRIPTION |
---|---|
df
|
Input DataFrame
TYPE:
|
col
|
Column name
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
bool
|
Result |
Examples:
import laktory # noqa: F401
import pyspark.sql.types as T
schema = T.StructType(
[
T.StructField("indexx", T.IntegerType()),
T.StructField(
"stock",
T.StructType(
[
T.StructField("symbol", T.StringType()),
T.StructField("name", T.StringType()),
]
),
),
T.StructField(
"prices",
T.ArrayType(
T.StructType(
[
T.StructField("open", T.IntegerType()),
T.StructField("close", T.IntegerType()),
]
)
),
),
]
)
data = [
(
1,
{"symbol": "AAPL", "name": "Apple"},
[{"open": 1, "close": 2}, {"open": 1, "close": 2}],
),
(
2,
{"symbol": "MSFT", "name": "Microsoft"},
[{"open": 1, "close": 2}, {"open": 1, "close": 2}],
),
(
3,
{"symbol": "GOOGL", "name": "Google"},
[{"open": 1, "close": 2}, {"open": 1, "close": 2}],
),
]
df = spark.createDataFrame(data, schema=schema)
print(df.laktory.has_column("symbol"))
# > False
print(df.laktory.has_column("`stock`.`symbol`"))
# > True
print(df.laktory.has_column("`prices[2]`.`close`"))
# > True
Source code in laktory/spark/dataframe/has_column.py
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
|